
INPUT DEVICES IN COMPUTER GRAPHICS

The Input Devices are the hardware that is used to transfer transfers input to
the computer. The data can be in the form of text, graphics, sound, and text.
Output device display data from the memory of the computer. Output can
be text, numeric data, line, polygon, and other objects.

These Devices include:

1. Keyboard

2. Mouse

3. Trackball

4. Spaceball

5. Joystick

6. Light Pen

7. Digitizer

8. Touch Panels

9. Voice Recognition

10. Image Scanner

SCAN CONVERSION DEFINITION

It is a process of representing graphics objects a collection of pixels. The
graphics objects are continuous. The pixels used are discrete. Each pixel can
have either on or off state.

The circuitry of the video display device of the computer is capable of
converting binary values (0, 1) into a pixel on and pixel off information. 0 is
represented by pixel off. 1 is represented using pixel on. Using this ability
graphics computer represent picture having discrete dots.

Any model of graphics can be reproduced with a dense matrix of dots or
points. Most human beings think graphics objects as points, lines, circles,

https://www.tpointtech.com/computer-graphics-input-devices#keyboard
https://www.tpointtech.com/computer-graphics-input-devices#mouse
https://www.tpointtech.com/computer-graphics-trackball
https://www.tpointtech.com/computer-graphics-trackball#spaceball
https://www.tpointtech.com/computer-graphics-trackball#joystick
https://www.tpointtech.com/computer-graphics-light-pen
https://www.tpointtech.com/computer-graphics-light-pen#digitizer
https://www.tpointtech.com/computer-graphics-light-pen#touch-panels
https://www.tpointtech.com/computer-graphics-light-pen#voice-recognition
https://www.tpointtech.com/computer-graphics-image-scanner

ellipses. For generating graphical object, many algorithms have been
developed.

Advantage of developing algorithms for scan conversion

1. Algorithms can generate graphics objects at a faster rate.

2. Using algorithms memory can be used efficiently.

3. Algorithms can develop a higher level of graphical objects.

Examples of objects which can be scan converted

1. Point

2. Line

3. Sector

4. Arc

5. Ellipse

6. Rectangle

7. Polygon

8. Characters

9. Filled Regions

The process of converting is also called as rasterization. The algorithms
implementation varies from one computer system to another computer
system. Some algorithms are implemented using the software. Some are
performed using hardware or firmware. Some are performed using various
combinations of hardware, firmware, and software.

Pixel or Pel:

The term pixel is a short form of the picture element. It is also called a point
or dot. It is the smallest picture unit accepted by display devices. A picture
is constructed from hundreds of such pixels. Pixels are generated using
commands. Lines, circle, arcs, characters; curves are drawn with closely
spaced pixels. To display the digit or letter matrix of pixels is used.

The closer the dots or pixels are, the better will be the quality of picture.
Closer the dots are, crisper will be the picture. Picture will not appear jagged
and unclear if pixels are closely spaced. So the quality of the picture is
directly proportional to the density of pixels on the screen.

Pixels are also defined as the smallest addressable unit or element of the
screen. Each pixel can be assigned an address as shown in fig:

Different graphics objects can be generated by setting the different intensity
of pixels and different colors of pixels. Each pixel has some co-ordinate
value. The coordinate is represented using row and column.

P (5, 5) used to represent a pixel in the 5th row and the 5th column. Each
pixel has some intensity value which is represented in memory of computer
called a frame buffer. Frame Buffer is also called a refresh buffer. This
memory is a storage area for storing pixels values using which pictures are
displayed. It is also called as digital memory. Inside the buffer, image is
stored as a pattern of binary digits either 0 or 1. So there is an array of 0 or 1
used to represent the picture. In black and white monitors, black pixels are
represented using 1's and white pixels are represented using 0's. In case of
systems having one bit per pixel frame buffer is called a bitmap. In systems
with multiple bits per pixel it is called a pixmap.

Scan Converting a Point

Each pixel on the graphics display does not represent a mathematical point.
Instead, it means a region which theoretically can contain an infinite number
of points. Scan-Converting a point involves illuminating the pixel that
contains the point.

Example: Display coordinates points as shown in fig
would both be represented by pixel (2, 1). In general, a point p (x, y) is
represented by the integer part of x & the integer part of y that is pixels [(INT
(x), INT (y).

Scan Converting a Straight Line

A straight line may be defined by two endpoints & an equation. In fig the two

endpoints are described by (x1,y1) and (x2,y2). The equation of the line is used to

determine the x, y coordinates of all the points that lie between these two

endpoints.

Using the equation of a straight line, y = mx + b where m = & b = the y

interrupt, we can find values of y by incrementing x from x =x1, to x = x2. By

scan-converting these calculated x, y values, we represent the line as a sequence

of pixels.

Properties of Good Line Drawing Algorithm:

1. Line should appear Straight: We must appropriate the line by choosing

addressable points close to it. If we choose well, the line will appear straight, if

not, we shall produce crossed lines.

The lines must be generated parallel or at 45° to the x and y-axes. Other lines

cause a problem: a line segment through it starts and finishes at addressable

points, may happen to pass through no another addressable points in between.

2. Lines should terminate accurately: Unless lines are plotted accurately, they

may terminate at the wrong place.

3. Lines should have constant density: Line density is proportional to the no.

of dots displayed divided by the length of the line.

To maintain constant density, dots should be equally spaced.

4. Line density should be independent of line length and angle: This can be

done by computing an approximating line-length estimate and to use a line-

generation algorithm that keeps line density constant to within the accuracy of

this estimate.

5. Line should be drawn rapidly: This computation should be performed by

special-purpose hardware.

Algorithm for line Drawing:

1. Direct use of line equation

2. DDA (Digital Differential Analyzer)

3. Bresenham's Algorithm

Direct use of line equation:

It is the simplest form of conversion. First of all scan P1 and P2 points. P1 has

co-ordinates (x1',y1') and (x2' y2').

Then m = (y2',y1')/(x2',x1') and b =

If value of |m|≤1 for each integer value of x. But do not consider

If value of |m|>1 for each integer value of y. But do not consider

Example: A line with starting point as (0, 0) and ending point (6, 18) is given.

Calculate value of intermediate points and slope of line.

Solution: P1 (0,0) P7 (6,18)

 x1=0

 y1=0

 x2=6

 y2=18

We know equation of line is

 y =m x + b

 y = 3x + b..............equation (1)

put value of x from initial point in equation (1), i.e., (0, 0) x =0, y=0

 0 = 3 x 0 + b

 0 = b ⟹ b=0

put b = 0 in equation (1)

 y = 3x + 0

 y = 3x

Now calculate intermediate points

 Let x = 1 ⟹ y = 3 x 1 ⟹ y = 3

 Let x = 2 ⟹ y = 3 x 2 ⟹ y = 6

 Let x = 3 ⟹ y = 3 x 3 ⟹ y = 9

 Let x = 4 ⟹ y = 3 x 4 ⟹ y = 12

 Let x = 5 ⟹ y = 3 x 5 ⟹ y = 15

 Let x = 6 ⟹ y = 3 x 6 ⟹ y = 18

So points are P1 (0,0)

 P2 (1,3)

 P3 (2,6)

 P4 (3,9)

 P5 (4,12)

 P6 (5,15)

 P7 (6,18)

Algorithm for drawing line using equation:

Step1: Start Algorithm

Step2: Declare variables x1,x2,y1,y2,dx,dy,m,b,

Step3: Enter values of x1,x2,y1,y2.

 The (x1,y1) are co-ordinates of a starting point of the line.

 The (x2,y2) are co-ordinates of a ending point of the line.

Step4: Calculate dx = x2- x1

Step5: Calculate dy = y2-y1

Step6: Calculate m =

Step7: Calculate b = y1-m* x1

Step8: Set (x, y) equal to starting point, i.e., lowest point and xendequal to

largest value of x.

 If dx < 0

 then x = x2

 y = y2

 xend= x1

 If dx > 0

 then x = x1

 y = y1

 xend= x2

Step9: Check whether the complete line has been drawn if x=xend, stop

Step10: Plot a point at current (x, y) coordinates

Step11: Increment value of x, i.e., x = x+1

Step12: Compute next value of y from equation y = mx + b

Step13: Go to Step9.

Program to draw a line using LineSlope Method

1. #include <graphics.h>

2. #include <stdlib.h>

3. #include <math.h>

4. #include <stdio.h>

5. #include <conio.h>

6. #include <iostream.h>

7.

8. class bresen

9. {

10. float x, y, x1, y1, x2, y2, dx, dy, m, c, xend;

11. public:

12. void get ();

13. void cal ();

14. };

15. void main ()

16. {

17. bresen b;

18. b.get ();

19. b.cal ();

20. getch ();

21. }

22. Void bresen :: get ()

23. {

24. print ("Enter start & end points");

25. print ("enter x1, y1, x2, y2");

26. scanf ("%f%f%f%f",sx1, sx2, sx3, sx4)

27. }

28. void bresen ::cal ()

29. {

30. /* request auto detection */

31. int gdriver = DETECT,gmode, errorcode;

32. /* initialize graphics and local variables */

33. initgraph (&gdriver, &gmode, " ");

34. /* read result of initialization */

35. errorcode = graphresult ();

36. if (errorcode ! = grOK) /*an error occurred */

37. {

38. printf("Graphics error: %s \n", grapherrormsg (errorcode);

39. printf ("Press any key to halt:");

40. getch ();

41. exit (1); /* terminate with an error code */

42. }

43. dx = x2-x1;

44. dy=y2-2y1;

45. m = dy/dx;

46. c = y1 - (m * x1);

47. if (dx<0)

48. {

49. x=x2;

50. y=y2;

51. xend=x1;

52. }

53. else

54. {

55. x=x1;

56. y=y1;

57. xend=x2;

58. }

59. while (x<=xend)

60. {

61. putpixel (x, y, RED);

62. y++;

63. y=(x*x) +c;

64. }

65. }

OUTPUT:

Enter Starting and End Points

Enter (X1, Y1, X2, Y2) 200 100 300 200

DDA ALGORITHM

DDA stands for Digital Differential Analyzer. It is an incremental

method of scan conversion of line. In this method calculation is

performed at each step but by using results of previous steps.

Suppose at step i, the pixels is (xi,yi)

The line of equation for step i

 yi=mxi+b......................equation 1

Next value will be

 yi+1=mxi+1+b.................equation 2

 m =

 yi+1-yi=∆y.......................equation 3

 yi+1-xi=∆x......................equation 4

 yi+1=yi+∆y

 ∆y=m∆x

 yi+1=yi+m∆x

 ∆x=∆y/m

 xi+1=xi+∆x

 xi+1=xi+∆y/m

Case1: When |M|<1 then (assume that x1<x2)

 x= x1,y=y1 set ∆x=1

 yi+1=y1+m, x=x+1

 Until x = x2</x

Case2: When |M|<1 then (assume that y1<y2)

 x= x1,y=y1 set ∆y=1

 xi+1= , y=y+1

 Until y → y2</y

Advantage:

1. It is a faster method than method of using direct use of line equation.

2. This method does not use multiplication theorem.

3. It allows us to detect the change in the value of x and y ,so plotting of same point twice is not

possible.

4. This method gives overflow indication when a point is repositioned.

5. It is an easy method because each step involves just two additions.

Disadvantage:

1. It involves floating point additions rounding off is done. Accumulations of round off error

cause accumulation of error.

2. Rounding off operations and floating point operations consumes a lot of time.

3. It is more suitable for generating line using the software. But it is less suited for hardware

implementation.

DDA Algorithm:

Step1: Start Algorithm

Step2: Declare x1,y1,x2,y2,dx,dy,x,y as integer variables.

Step3: Enter value of x1,y1,x2,y2.

Step4: Calculate dx = x2-x1

Step5: Calculate dy = y2-y1

Step6: If ABS (dx) > ABS (dy)

 Then step = abs (dx)

 Else

Step7: xinc=dx/step

 yinc=dy/step

 assign x = x1

 assign y = y1

Step8: Set pixel (x, y)

Step9: x = x + xinc

 y = y + yinc

 Set pixels (Round (x), Round (y))

Step10: Repeat step 9 until x = x2

Step11: End Algorithm

Example: If a line is drawn from (2, 3) to (6, 15) with use of DDA.

How many points will needed to generate such line?

Solution: P1 (2,3) P11 (6,15)

 x1=2

 y1=3

 x2= 6

 y2=15

 dx = 6 - 2 = 4

 dy = 15 - 3 = 12

 m =

For calculating next value of x takes x = x +

Program to implement DDA Line Drawing Algorithm:

1. #include<graphics.h>

2. #include<conio.h>

3. #include<stdio.h>

4. void main()

5. {

6. intgd = DETECT ,gm, i;

7. float x, y,dx,dy,steps;

8. int x0, x1, y0, y1;

9. initgraph(&gd, &gm, "C:\\TC\\BGI");

10. setbkcolor(WHITE);

11. x0 = 100 , y0 = 200, x1 = 500, y1 = 300;

12. dx = (float)(x1 - x0);

13. dy = (float)(y1 - y0);

14. if(dx>=dy)

15. {

16. steps = dx;

17. }

18. else

19. {

20. steps = dy;

21. }

22. dx = dx/steps;

23. dy = dy/steps;

24. x = x0;

25. y = y0;

26. i = 1;

27. while(i<= steps)

28. {

29. putpixel(x, y, RED);

30. x += dx;

31. y += dy;

32. i=i+1;

33. }

34. getch();

35. closegraph();

36. }

Output:

Symmetrical DDA:

The Digital Differential Analyzer (DDA) generates lines from their

differential equations. The equation of a straight line is

The DDA works on the principle that we simultaneously increment x

and y by small steps proportional to the first derivatives of x and y. In

this case of a straight line, the first derivatives are constant and are

proportional to ∆x and ∆y . Therefore, we could generate a line by

incrementing x and y by ϵ ∆x and ϵ ∆y, where ϵ is some small

quantity. There are two ways to generate points

1. By rounding to the nearest integer after each incremental step, after

rounding we display dots at the resultant x and y.

2. An alternative to rounding the use of arithmetic overflow: x and y

are kept in registers that have two parts, integer and fractional. The

incrementing values, which are both less than unity, are repeatedly

added to the fractional parts and whenever the results overflows, the

corresponding integer part is incremented. The integer parts of the x

and y registers are used in plotting the line. In the case of the

symmetrical DDA, we choose ε=2-n,where 2n-1≤max (|∆x|,|∆y|)<2π

A line drawn with the symmetrical DDA is shown in fig:

Example: If a line is drawn from (0, 0) to (10, 5) with a symmetrical

DDA

1. How many iterations are performed?

2. How many different points will be generated?

Solutions: Given: P1 (0,0) P2 (10,5)

 x1=0

 y1=0

 x2=10

 y2=5

 dx = 10 - 0 = 10

 dy = 5 - 0 = 0

P1 (0,0) will be considered starting points

P3 (1,0.5) point not plotted

P4 (2, 1) point plotted

P5 (3, 1.5) point not plotted

P6 (4,2) point plotted

P7 (5,2.5) point not plotted

P8 (6,3) point plotted

P9 (7,3.5) point not plotted

P10 (8, 4) point plotted

P11 (9,4.5) point not plotted

P12 (10,5) point plotted

Following Figure show line plotted using these points.

