<u>Lesson Plan of Session 2025-26 (July 2025-Odd Sem)</u> <u>BA/B.Sc/ B.Sc (Hons) -Mathematics</u>

Name of Assistant Professor: Dr SHILPI

Class:- BA/BSc/B.Sc (Honours) Mathematics (1st Semester)
Subject:- 24MATM401DS01:: Functions and Algebra (Paper-I)

$\mathbf{Month}: \mathbf{JULY}$			
Week	Topic Covered		
Week 5 (4 Days)	Unit I: Relations, Functions along with Domain and Range, Composition of Functions,		
	Month: AUGUST		
Week	Topic Covered		
Week 1	Invertibility and Inverse of Functions, One-to-one Correspondence and the Cardinality of a Set.		
Week 2	Unit-II: Relations between the Roots and Coefficients of General Polynomial Equation in One Variable. Solutions of Polynomial Equations having Conditions on Roots. Common Roots and Multiple Roots.		
Week 3	Transformation of Equations. Nature of the Roots of an Equation Descarte's Rule of Signs. Solutions of Cubic Equations (Cardon's Method). Biquadratic Equations and their Solutions.		
Week 4	Test and Assignments		
	Month: SEPTEMBER		
Week	Topic Covered		
Week 1	Unit III: Matrix and its types . Symmetric, Skew-Symmetric, Hermitian and Skew Hermitian Matrices.		
Week 2	Unitary and Orthogonal Matrices, Idempotent, Involuntary, Nilpotent Matrices.		
Week 3	Rank of a Matrix & its applications. Rank of a Matrices, Row Rank and Column Rank of a Matrix, Elementary Operations on Matrices,		
Week 4	Inverse of a Matrix , Normal Form, PAQ Form and Examples,		
	Month: OCTOBER		
Week	Topic Covered		
Week 1	Linear Dependence and Independence of Rows and Columns of Matrices,		
Week 2	Applications of Matrices to a System of Linear (Both Homogeneous and Non-Homogeneous) Equations,		
Week 3	Deepawali Break		
Week 4	Theorems on Consistency of a System of Linear Equations with Examples		
Week 5	Test and assignments		
	Month: NOVEMBER		
Week	Topic Covered		
Week 1	Unit IV: Cayley Hamilton theorem. Eigenvalues, Eigenvectors and the Characteristic Equation of a Matrix. Minimal Polynomial of a Matrix.		
Week 2	Cayley Hamilton Theorem and Its Use in Finding the Inverse of a Matrix.		
Week 3	Diagonalization of Matrix.		
Week 4	*Revision, Test and Assignments		

Name of Assistant Professor:

Dr SUDESH KUMARI

Class:-Subject:- B.Sc (Honours) Mathematics (1st Semester) 24MATS401DS02::Vector Calculus (Paper-II)

$\mathbf{Month}: \mathbf{JULY}$		
Topic Covered		
Unit I: Scalar and Vector Product of Three Vectors, Product of Four Vectors. Reciprocal Vectors. Partial Derivative, Vector Differentiation.		
Month: AUGUST		
Topic Covered		
Scalar Valued Point Functions, Vector Valued Point Functions,		
Derivative along a Curve, Directional Derivatives. Gradient of a Scalar Point Function,		
Geometrical Interpretation of Grad, Gradient as a Point Function. Tangent Planes and Normal Lines.		
Test and Assignments		
Month: SEPTEMBER		
Topic Covered		
Unit II: Divergence and Curl of Vector Point Function, Characters of Divf and Curlf as Point Function, Examples.		
Gradient, Divergence and Curl of Sums and Product and Their Related Vector Identities. Laplacian Operator.		
Double Integrals, Double Integrals in Polar Co-Ordinates, Change of Order, Change in Variable,		
Triple Integrals, Triple Integrals in Cylindrical Co-Ordinates and Spherical Co-Ordinates, Change of Order in Triple Integral,		
Month: OCTOBER		
Topic Covered		
Volume Integral with Examples		
Unit III: Line Integrals, Independent of the Path,		
Deepawali Break		
Green Theorem and Problem Based on Green Theorem.		
Test and Assignments		
Month: NOVEMBER		
Topic Covered		
Unit IV: Surface Integral,		
Stokes' Theorem and Problem Based on Stokes' Theorem,		
Gauss Theorem and Problems based on Gauss Theorem.		
*Revision, Test and Assignments		

Name of Assistant Professor:- Dr S

Dr SUDESH KUMARI

Class:-

Minor Course (1st Semester)

Subject:

24MAT401MI01:: Basic Mathematics

(Theory Marks-70, Internal Marks-30)

	$\mathbf{Month}: \mathbf{JULY}$		
Week	Topic Covered		
Week 5	Unit I: Calculus: (Problems and Theorems involving Trigonometrically Ratios are not		
(4 Days)	to be done), Month: AUGUST		
VI71-			
Week	Topic Covered		
Week 1	Differentiation: Partial Derivatives up to Second Order; Homogeneity of Functions and Euler's Theorem;		
Week 2	Total Differentials, Differentiation of Implicit Function with the Help of Total Differentials. Maxima and Minima;		
Week 3	Cases of One Variable involving Second or Higher Order Derivatives; Cases of Two Variables involving not More than One Constraint.		
Week 4	Test and Assignments		
	Month: SEPTEMBER		
Week	Topic Covered		
Week 1	Unit II: Integration: Integration as Anti-Derivative Process; Standard Forms; Methods of Integration by Substitution, By Parts, and By Use of Partial Fractions;		
Week 2	Definite Integration; Finding Areas in Simple Cases; Consumers and Producers Surplus;		
Week 3	Nature of Commodities Learning Curve; Leontiff Input-Output Model.		
Week 4	Test and Assignments		
	$\mathbf{Month}: \mathbf{OCTOBER}$		
Week	Topic Covered		
Week 1	Unit III: Matrices: Definition of Matrix; Types of Matrices with Examples,		
Week 2	Algebra of Matrices with Examples		
Week 3	Deepawali Break		
Week 4	Unit IV: Determinants with Examples, Properties of Determinants;		
Week 5	Test and Assignments		
	Month: NOVEMBER		
Week	Topic Covered		
Week 1	Calculation of Values of Determinants Up to Third Order;		
Week 2	Adjoint of a Matrix, through Adjoint and Elementary Row or Column Operations;		
Week 3	Solution of System of Linear Equations having Unique Solution and Involving not More than Three Variables.		
Week 4	*Revision, Test and Assignments		

Name of Assistant Professor:

Dr SUDESH KUMARI

Class:-Subject:- Multidisciplinary Course(MDC) (1st Semester) 24MATX01MD01:: Introductory Mathematics

(Theory Marks-50, Internal Marks-25)

Month: JULY		
Week	Topic Covered	
Week 5 (4 Days)	Unit I: Numbers, H.C.F. and L.C.M. of Numbers, Decimal and Fractions,	
(05 0)	Month: AUGUST	
Week	Topic Covered	
Week 1	Simplification, Square Roots and Cube Roots,	
Week 2	Surds and Indices, Problems on Numbers.	
Week 3	Unit II: Average with Examples	
Week 4	Percentage, Profit and Loss with Examples AND Test and Assignments	
	Month: SEPTEMBER	
Week	Topic Covered	
Week 1	Ratio and Proportion with Examples	
Week 2	Problem on Ages with Examples	
Week 3	Partnership with Examples	
Week 4	Test and Assignments	
	Month: OCTOBER	
Week	Topic Covered	
Week 1	Unit III: Time and Work with Examples	
Week 2	Time and Distance with Examples,	
Week 3	Deepawali Break	
Week 4	Problems on Trains,	
Week 5	Test and Assignments	
Month: NOVEMBER		
Week Topic Covered		
Week 1	Mixure Problem	
Week 2	Problems based on Calendar.	
Week 3	Problems based on Clock.	
Week 4	*Revision, Test and Assignments	

Name of Assistant Professor:-

Dr Sudesh Kumari

Class:

Skill Enhancement Course (1st Semester)

Subject: 23MAT501SE01:: Mathematical Programming in

C and Numerical Methods

(External Marks-35, Internal Marks-15, Practical Marks-Internal-05, External-20)

Month: JULY	
Week	Topic Covered
Week 5 (4 Days)	Unit I: Programmer's Model of a Computer, Algorithms, Flow Charts,
V	Month: AUGUST
Week	Topic Covered
Week 1	Data Types, Operators and Expressions, Input /Output Functions.
Week 2	Decisions Control Structure: Decision Statements, Logical and Conditional Statements, Implementation of Loops,
Week 3	Switch Statement & Case Control Structures.
Week 4	Functions, Preprocessors and Arrays.
	$\mathbf{Month}: \mathbf{SEPTEMBER}$
Week	Topic Covered
Week 1	Unit II: Strings: Character Data Type, Standard String handling Functions, Arithmetic Operations on Characters. Structures: Definition, using Structures, use of Structures in Arrays and Arrays in Structures.
Week 2	Pointers: Pointers, Data Type, Pointers and Arrays, Pointers and Functions.
Week 3	Solution of Algebraic and Transcendental Equations: Bisection Method, Regula-Falsi Method, Secant Method,
Week 4	Test and Assignments
	Month: OCTOBER
Week	Topic Covered
Week 1	Newton-Raphson's Method. Newton's Iterative Method for Finding Pth Root of a Number,
Week 2	Order of Convergence of Above Methods.
Week 3	Deepawali Break
Week 4	Unit III: Simultaneous Linear Algebraic Equations: Gauss-Elimination Method, Gauss-Jordan Method,
Week 5	Test and Assignments
	Month: NOVEMBER
Week	Topic Covered
Week 1	Triangularization Method (LU decomposition method). Crout's Method, Cholesky Decomposition Method.
Week 2	Iterative Method, Jacobi's Method,
Week 3	Gauss-Seidal's Method, Relaxation Method.
Week 4	*Revision, Test and Assignments

Name of Assistant Professor:- Dr Sudesh Kumari Class:- BCA-I (1st Semester)

Subject:- 23MAT501SE01:: Mathematics Foundation of

Computer Science - I

(External Marks-50, Internal Marks-25)

Month: JULY			
Week	Topic Covered		
Week 5 (4 Days)	Unit I: Set, Set Operations, Properties of Set Operations, Subset, Venn Diagrams, Cartesian Products.		
•	Month : AUGUST		
Week	Topic Covered		
Week 1	Relations on a Set, Properties of Relations, Representing Relations using Matrices and Digraphs,		
Week 2	Types of Relations, Equivalence Relation, Equivalence Relation and Partition on Set, Closures of Relations, Warshall's algorithm.		
Week 3	Functions, Properties of Functions (Domain, Range), Composition of Functions, Surjective (onto), Injective (one-to-one) and Bijective Functions, Inverse of Functions.		
Week 4	Some useful Functions for Computer Science: Exponential and Logarithmic Functions, Polynomial Functions, Ceiling and Floor Functions.		
	Month: SEPTEMBER		
Week	Topic Covered		
Week 1	Unit II: Basics of Counting, Pigeonhole Principle, Permutation, Combination, Binomial Coefficients, Binomial Theorem.		
Week 2	Recurrence Relations, Modelling Recurrence Relations with Examples, Like Fibonacci numbers, the Tower of Hanoi Problem.		
Week 3	Solving Linear Recurrence Relation with Constant Coefficients using Characteristic Equation Roots Method.		
Week 4	Test and Assignments		
	Month: OCTOBER		
Week	Topic Covered		
Week 1	Unit III: Basic Terminologies of Graphs, Connected and Disconnected Graphs, Subgraph, Paths and Cycles, Complete Graphs, Digraphs, Weighted Graphs, Euler and Hamiltonian Graphs.		
Week 2	Trees, Properties of Trees, Concept of Spanning Tree.		
Week 3	Deepawali Break		
Week 4	Planar Graphs. Definitions and Basic Results on the topics Mentioned.		
Week 5	Test and Assignments		
	Month: NOVEMBER		
Week	Topic Covered		
Week 1	Unit IV: Types of matrices, algebra of matrices—addition, subtraction, and multiplication of matrices, determinant of a matrix, symmetric and skew-symmetric matrices, orthogonal matrix, rank of a matrix, inverse of a matrix,		
Week 2	applications of matrices to solve system of linear equations,		
Week 3	Eigen values and Eigen vectors, Caley-Hamilton theorem.		
Week 4	*Revision, Test and Assignments		

Class:- BA/BSc/B.Sc (Hons) Mathematics-II (3rd Semester)

(Acc. to NEP-2020)

Subject:- Ordinary Differential Equation

1M	Month-July	
Week	Topic Covered	
Week 3	Unit-I: Geometrical Meaning of a Differential Equation, Exact Differential Equations, Integrating Factors	
Week 4	First Order Higher Degree Equations Solvable for x,y,p Lagrange's Equations, Clairaut's Equations, Equation Reducible to Clairaut's Form	
Week 5 (4 Days)	Singular Solutions with Examples	
	Month- August	
Week	Topic Covered	
Week 1	Unit-II: Orthogonal Trajectories: Cartesian Coordinates and Polar Coordinates, Self Orthogonal Family of Curves	
Week 2	Linear Differential Equations with Constant Coefficients, Homogeneous Linear Ordinary Differential Equations,	
Week 3	Equations Reducible to Homogeneous Linear Ordinary Differential Equations,	
Week 4	Unit-III: Linear Differential Equations of Second Order: Reduction to Normal Form,	
	Month-September	
Week	Topic Covered	
Week 1	Transformation of the Equation by Changing the Dependent Variable/the Independent Variable	
Week 2	Solution by Operators of Non-Homogeneous Linear Differential Equations,	
Week 3	Reduction of Order of a Differential Equation	
Week 4	Method of Variations of Parameters. Method of Undetermined Coefficients	
	Month-October	
Week	Topic Covered	
Week 1	Unit-IV: Ordinary Simultaneous Differential Equations	
Week 2	Simultaneous Equation of the Form $dx/P = dy/Q = dz/R$.	
Week 3	Deepawali Break	
Week 3	Total Differential Equations	
Week 4	Condition for $Pdx + Qdy + Rdz = 0$ to be Exact.	
Week 5	Problems and Test	
Month-November		
Week	Topic Covered	
Week 1	General Method of Solving Pdx + Qdy + Rdz = 0 by Taking One Variable Constant.	
Week 2	Method of Auxiliary Equations	
Week 3	*Revision, Test and Assignments	

Subject:

Class:- B.Sc (Hons) Mathematics-II (3rd Semester)

(Acc. to NEP-2020) Advanced Calculus

	Month: JULY	
Week	Topic Covered	
Week 3	Unit I: Continuity, Sequential Continuity with Example	
Week 4	Properties of Continuous Functions with Problems	
Week 5 (4 Days)	Uniform Continuity with Examples	
(4 Days)	Month: AUGUST	
Week	Topic Covered	
Week 1	Chain Rule of Differentiability, Mean Value Theorems	
Week 2	Rolle's Theorem and Lagrange's Mean Value Theorem and Their Geometrical Interpretations	
Week 3	Taylor's Theorem with Various Forms of Remainders, Darboux Intermediate Value Theorem for Derivatives,	
Week 4	Reduction formulae. Rectification, Intrinsic Equations of Curve—Examples	
	Month: SEPTEMBER	
Week	Topic Covered	
Week 1	Unit II: Limit and Continuity of Real Valued Functions of Two Variables. Partial Differentiation, Total Differentials	
Week 2	Composite Functions & Implicit Functions. Change of Variables, Homogeneous Functions & Euler's Theorem on Homogeneous Functions	
Week 3	Taylor's Theorem for Functions of Two Variables—Examples	
Week 4	Problems and Test	
	Month: OCTOBER	
Week	Topic Covered	
Week 1	Unit III: Differentiability of Real Valued Functions of Two Variables. Schwarz and Young's Theorem	
Week 2	Implicit Function Theorem. Maxima, Minima and Saddle Points of Two Variables, Lagrange's Method of Multipliers	
Week 3	Deepawali Break	
Week 4	Unit IV: Curves: Tangents, Principal Normals, Binormals,	
Week 5	Serret-Frenet Formulae, Locus of Centre of Curvature	
	Month: NOVEMBER	
Week	Topic Covered	
Week 1	Spherical Curvature, Locus of Centre of Spherical Curvature,	
Week 2	Involutes, Evolutes, Bertrand Curves. Surfaces: Tangent Planes, One Parameter Family of Surfaces, Envelopes	
Week 3	*Revision, Test and Assignments	

Name of Assistant Professor: Dr SHILPI

Class:- Minor Course (3rd Semester)

Subject:- 24MAT401MI01:: Operations Research

(Theory Marks-70, Internal Marks-30)

Month: JULY	
Week	Topic Covered
Week 3	Unit I: Linear Programming Problems (LPP): Introduction to Linear Programming Problems (LPP), Mathematical Formulation of the Linear Programming Problems with Illustrations.
Week 4	Graphical Method used for Solving Linear Programming Problem. Feasible Region of LPP, Unbounded Solution to the LPP in Graphical Method,
Week 5 (4 Days)	Canonical and Standard Form of LPP.
	Month: AUGUST
Week	Topic Covered
Week 1	Unit II: Simplex Method: Basic and Non Basic Variables,
Week 2	Theory of Simplex Method, Optimality and Unboundedness, Simplex Algorithm,
Week 3	Simplex Method in Tabular Format. Introduction to Artificial Variables, Two –Phase Simplex
	Method, Big-M Method, Degeneracy Problem in Simplex Method.
Week 4	Test and Assignments
	Month: SEPTEMBER
Week	Topic Covered
Week 1	Unit III: Transportation Problem: Introduction to Transportation Problem,
Week 2	Initial Basic Feasible Solution to Transportation Problem using North-West Corner,
Week 3	Optimal Solution to Transportation Problem using MODI Method,
Week 4	Test and Assignments
	Month: OCTOBER
Week	Topic Covered
Week 1	Least Cost Method and Vogel's Approximation Method.
Week 2	Unbalanced Transportation Problem,
Week 3	Deepawali Break
Week 4	Degeneracy in Transportation Problem.
Week 5	Test and Assignments
	Month: NOVEMBER
Week	Topic Covered
Week 1	Unit IV: Assignment Problem: Introduction to Assignment Problem,
Week 2	Mathematical Formulation of Assignment Problem,
Week 3	Solution to Assignment Problem using Hungarian Method.
Week 4	*Revision, Test and Assignments

Name of Assistant Professor:- Dr JAIVEER

Class:- MultidisciplinaryCourse(MDC) (3rd Semester)
Subject:- 24MATX01MD01:: Applicable Mathematics

(Theory Marks-50, Internal Marks-25)

$\mathbf{Month}: \mathbf{JULY}$	
Week	Topic Covered
Week 3	Unit I: Theory of Sets: Meaning, Elements, Types, Presentation and Equality of Sets,
Week 4	Union, Intersection, Complement and Difference of Sets,
Week 5 (4 Days)	Venn Diagram, Cartesian Product of Two Sets,
	$\mathbf{Month}: \mathbf{AUGUST}$
Week	Topic Covered
Week 1	Applications of Set Theory.
Week 2	Unit II: Matrices and Determinants: Definition of a Matrix; Types of Matrices,
Week 3	Algebra of Matrices; Properties of Determinants;
Week 4	Calculation of Values of Determinants upto Third Order;
	$\mathbf{Month}: \mathbf{SEPTEMBER}$
Week	Topic Covered
Week 1	Adjoint of a Matrix, Elementary Row and Column Operations;
Week 2	Finding Inverse Matrix through Adjoint;
Week 3	Solution of a System of Linear Equations having Unique Solution and Involving not more than Three Variables.
Week 4	Test and Assignments
	Month: OCTOBER
Week	Topic Covered
Week 1	Unit III: Compound Interest: Certain Different Types of Interest Rate;
Week 2	Concept of Present Value and Amount of a Sum.
Week 3	Deepawali Break
Week 4	Unit IV: Annuities: Types of Annuities;
Week 5	Test and Assignments
	Month: NOVEMBER
Week	Topic Covered
Week 1	Present Value and Amount of an Annuity,
Week 2	Including the Case of Continuous Compounding
Week 3	*Revision, Test and Assignments

Name of Assistant Professor: Dr Shilpi

Class:- Skill Enhancement Course (3rd Semester)

Subject:- 23MAT501SE01:: Operations Research Techniques

(External Marks-35, Internal Marks-15, Practical Marks-Internal-05, External-20)

	Month: JULY	
Week	Topic Covered	
Week 3	Unit I: Definition, Scope, Methodology and Applications of OR.	
Week 4	Types of OR Models. Concept of Optimization,	
Week 5 (4 Days)	Linear Programming: Introduction, Formulation of a Linear Programming Problem (LPP), Requirements for an LPP,	
	Month: AUGUST	
Week	Topic Covered	
Week 1	Advantages and limitations of LP. Graphical Solution: Multiple, Unbounded and Infeasible Solutions.	
Week 2	Unit II: Principle of Simplex Method: Standard Form, Basic Solution, Basic Feasible Solution.	
Week 3	Computational Aspect of Simplex Method: Cases of Unique Feasible Solution,	
Week 4	No Feasible Solution, Multiple Solution and Unbounded Solution and Degeneracy.	
	Month: SEPTEMBER	
Week	Topic Covered	
Week 1	Two Phase Method with Examples and Big- M methods with Examples	
Week 2	Unit III: Duality in LPP, Primal-Dual Relationship.	
Week 3	Transportation Problem: Methods for Finding Basic Feasible Solution of a Transportation Problem,	
Week 4	Test and Assignments	
	Month: OCTOBER	
Week	Topic Covered	
Week 1	Modified Distribution Method for Finding The Optimum Solution,	
Week 2	Unbalanced and Degenerate Transportation Problems,	
Week 3	Deepawali Break	
Week 4	Transhipment Problem, Maximization in a Transportation Problem.	
Week 5	Test and Assignments	
	Month: NOVEMBER	
Week	Topic Covered	
Week 1	Unit IV: Assignment Problem: Solution by Hungarian method, Unbalanced Assignment Problem, Maximization in an Assignment Problem, Crew Assignment And Travelling Salesman Problem.	
Week 2	Game Theory: Two Person Zero Sum Game, Game with Saddle Points, The Rule of Dominance; Algebraic, Graphical and Linear Programming Methods for Solving Mixed Strategy Games.	
Week 3	*Revision, Test and Assignments	

Name of Assistant Professor:

Dr Shilpi BA/B.Sc/BSc (Hons)-III (5th Semester) Class:-Subject: BM351/12BSM351:: Real Analysis

Week 4 Unit I: Riemann Integral, Integrability of Continuous Functions Week 5 A Days) Month: AUGUST Week Topic Covered Week 1 Mean Value Theorems of Integral Calculus with Examples Week 2 Unit II: Improper Integrals and Their Convergence Week 3 Comparison Tests, Abel's and Dirichlet's Tests, Frullani's Integral, Integral as a Function of a Parameter Week 4 Continuity, Differentiability and Integrability of an Integral of a Function of a Parameter Week 1 Unit II: Definition and Examples of Metric Spaces, Neighborhoods, Limit Points, Interior Points, Week 2 Open and Closed Sets, Closure and Interior, Boundary Points, Subspace of a Metric Space, Week 3 Equivalent Metrics, Cauchy Sequences, Completeness, Week 4 Cantor's Intersection Theorem, Baire's Category Theorem, Contraction Principle Month: OCTOBER Week 1 Unit IV: Continuous Functions, Uniform Continuity, Week 2 Compactness for Metric Spaces, Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered		$\mathbf{Month}: \mathbf{JULY}$	
Week 5 4 Days) Month: AUGUST Week Topic Covered Week 1 Mean Value Theorems of Integral Calculus with Examples Week 2 Unit II: Improper Integrals and Their Convergence Week 3 Comparison Tests, Abel's and Dirichlet's Tests, Frullani's Integral, Integral as a Function of a Parameter Week 4 Continuity, Differentiability and Integrability of an Integral of a Function of a Parameter Week Topic Covered Week 1 Unit III: Definition and Examples of Metric Spaces, Neighborhoods, Limit Points, Interior Points, Week 2 Open and Closed Sets, Closure and Interior, Boundary Points, Subspace of a Metric Space, Week 3 Equivalent Metrics, Cauchy Sequences, Completeness, Week 4 Cantor's Intersection Theorem, Baire's Category Theorem, Contraction Principle Month: OCTOBER Week 1 Unit IV: Continuous Functions, Uniform Continuity, Week 2 Compactness for Metric Spaces, Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered	Week	Topic Covered	
Week 5 (4 Days) Month: AUGUST Week Topic Covered Week 1 Mean Value Theorems of Integral Calculus with Examples Week 2 Unit II: Improper Integrals and Their Convergence Week 3 Comparison Tests, Abel's and Dirichlet's Tests, Frullani's Integral, Integral as a Function of a Parameter Week 4 Continuity, Differentiability and Integrability of an Integral of a Function of a Parameter Week 4 Topic Covered Week 1 Unit III: Definition and Examples of Metric Spaces, Neighborhoods, Limit Points, Interior Points, Week 2 Open and Closed Sets, Closure and Interior, Boundary Points, Subspace of a Metric Space, Week 3 Equivalent Metrics, Cauchy Sequences, Completeness, Week 4 Cantor's Intersection Theorem, Baire's Category Theorem, Contraction Principle Month: OCTOBER Week 1 Unit IV: Continuous Functions, Uniform Continuity, Week 2 Compactness for Metric Spaces, Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered	Week 4	Unit I: Riemann Integral, Integrability of Continuous Functions	
Month: AUGUST Week Topic Covered Week 1 Mean Value Theorems of Integral Calculus with Examples Week 2 Unit II: Improper Integrals and Their Convergence Week 3 Comparison Tests, Abel's and Dirichlet's Tests, Frullani's Integral, Integral as a Function of a Parameter Week 4 Continuity, Differentiability and Integrability of an Integral of a Function of a Parameter Month: SEPTEMBER Week Topic Covered Week 1 Unit III: Definition and Examples of Metric Spaces, Neighborhoods, Limit Points, Interior Points, Week 2 Open and Closed Sets, Closure and Interior, Boundary Points, Subspace of a Metric Space, Week 3 Equivalent Metrics, Cauchy Sequences, Completeness, Week 4 Cantor's Intersection Theorem, Baire's Category Theorem, Contraction Principle Month: OCTOBER Week Topic Covered Week 1 Unit IV: Continuous Functions, Uniform Continuity, Week 2 Compactness for Metric Spaces, Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered	Week 4	Integrability of Monotonic Functions	
Week 1 Mean Value Theorems of Integral Calculus with Examples Week 2 Unit II: Improper Integrals and Their Convergence Week 3 Comparison Tests, Abel's and Dirichlet's Tests, Frullani's Integral, Integral as a Function of a Parameter Week 4 Continuity, Differentiability and Integrability of an Integral of a Function of a Parameter Month: SEPTEMBER Week Topic Covered Week 1 Unit III: Definition and Examples of Metric Spaces, Neighborhoods, Limit Points, Interior Points, Week 2 Open and Closed Sets, Closure and Interior, Boundary Points, Subspace of a Metric Space, Week 3 Equivalent Metrics, Cauchy Sequences, Completeness, Week 4 Cantor's Intersection Theorem, Baire's Category Theorem, Contraction Principle Month: OCTOBER Week Topic Covered Week 1 Unit IV: Continuous Functions, Uniform Continuity, Week 2 Compactness for Metric Spaces, Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered	Week 5 (4 Days)	The Fundamental Theorem of Integral Calculus.	
Week 1 Mean Value Theorems of Integral Calculus with Examples Week 2 Unit II: Improper Integrals and Their Convergence Week 3 Comparison Tests, Abel's and Dirichlet's Tests, Frullani's Integral, Integral as a Function of a Parameter Week 4 Continuity, Differentiability and Integrability of an Integral of a Function of a Parameter Month: SEPTEMBER Week Topic Covered Week 1 Unit III: Definition and Examples of Metric Spaces, Neighborhoods, Limit Points, Interior Points, Week 2 Open and Closed Sets, Closure and Interior, Boundary Points, Subspace of a Metric Space, Week 3 Equivalent Metrics, Cauchy Sequences, Completeness, Week 4 Cantor's Intersection Theorem, Baire's Category Theorem, Contraction Principle Month: OCTOBER Week Topic Covered Week 1 Unit IV: Continuous Functions, Uniform Continuity, Week 2 Compactness for Metric Spaces, Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered		Month: AUGUST	
Week 2 Week 3 Week 4 Week 4 Week 4 Continuity, Differentiability and Integrability of an Integral of a Function of a Parameter Week 4 Week 4 Continuity, Differentiability and Integrability of an Integral of a Function of a Parameter Month: SEPTEMBER Week Topic Covered Week 1 Week 2 Open and Closed Sets, Closure and Interior, Boundary Points, Subspace of a Metric Space, Week 3 Equivalent Metrics, Cauchy Sequences, Completeness, Week 4 Cantor's Intersection Theorem, Baire's Category Theorem, Contraction Principle Month: OCTOBER Week 1 Unit IV: Continuous Functions, Uniform Continuity, Week 2 Compactness for Metric Spaces, Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Topic Covered Week 5 Topic Covered Week 6 Topic Covered Week 7 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered	Week	Topic Covered	
Week 3 Comparison Tests, Abel's and Dirichlet's Tests, Frullani's Integral, Integral as a Function of a Parameter Week 4 Continuity, Differentiability and Integrability of an Integral of a Function of a Parameter Month: SEPTEMBER Week Topic Covered Week 1 Unit III: Definition and Examples of Metric Spaces, Neighborhoods, Limit Points, Interior Points, Week 2 Open and Closed Sets, Closure and Interior, Boundary Points, Subspace of a Metric Space, Week 3 Equivalent Metrics, Cauchy Sequences, Completeness, Week 4 Cantor's Intersection Theorem, Baire's Category Theorem, Contraction Principle Month: OCTOBER Week Topic Covered Week 1 Unit IV: Continuous Functions, Uniform Continuity, Week 2 Compactness for Metric Spaces, Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered	Week 1	Mean Value Theorems of Integral Calculus with Examples	
a Function of a Parameter Week 4 Continuity, Differentiability and Integrability of an Integral of a Function of a Parameter Month: SEPTEMBER Week Topic Covered Week 1 Unit III: Definition and Examples of Metric Spaces, Neighborhoods, Limit Points, Interior Points, Week 2 Open and Closed Sets, Closure and Interior, Boundary Points, Subspace of a Metric Space, Week 3 Equivalent Metrics, Cauchy Sequences, Completeness, Week 4 Cantor's Intersection Theorem, Baire's Category Theorem, Contraction Principle Month: OCTOBER Week Topic Covered Week 1 Unit IV: Continuous Functions, Uniform Continuity, Week 2 Compactness for Metric Spaces, Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered	Week 2	Unit II: Improper Integrals and Their Convergence	
Month: SEPTEMBER Week Topic Covered Week 1 Unit III: Definition and Examples of Metric Spaces, Neighborhoods, Limit Points, Interior Points, Week 2 Open and Closed Sets, Closure and Interior, Boundary Points, Subspace of a Metric Space, Week 3 Equivalent Metrics, Cauchy Sequences, Completeness, Week 4 Cantor's Intersection Theorem, Baire's Category Theorem, Contraction Principle Month: OCTOBER Week Topic Covered Week 1 Unit IV: Continuous Functions, Uniform Continuity, Week 2 Compactness for Metric Spaces, Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered	Week 3		
Week 1 Unit III: Definition and Examples of Metric Spaces, Neighborhoods, Limit Points, Interior Points, Week 2 Open and Closed Sets, Closure and Interior, Boundary Points, Subspace of a Metric Space, Week 3 Equivalent Metrics, Cauchy Sequences, Completeness, Week 4 Cantor's Intersection Theorem, Baire's Category Theorem, Contraction Principle Month: OCTOBER Week Topic Covered Week 1 Unit IV: Continuous Functions, Uniform Continuity, Week 2 Compactness for Metric Spaces, Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered	Week 4		
Week 1 Unit III: Definition and Examples of Metric Spaces, Neighborhoods, Limit Points, Interior Points, Week 2 Open and Closed Sets, Closure and Interior, Boundary Points, Subspace of a Metric Space, Week 3 Equivalent Metrics, Cauchy Sequences, Completeness, Week 4 Cantor's Intersection Theorem, Baire's Category Theorem, Contraction Principle Month: OCTOBER Week Topic Covered Week 1 Unit IV: Continuous Functions, Uniform Continuity, Week 2 Compactness for Metric Spaces, Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered		Month: SEPTEMBER	
Points, Interior Points, Week 2 Open and Closed Sets, Closure and Interior, Boundary Points, Subspace of a Metric Space, Week 3 Equivalent Metrics, Cauchy Sequences, Completeness, Week 4 Cantor's Intersection Theorem, Baire's Category Theorem, Contraction Principle Month: OCTOBER Week Topic Covered Week 1 Unit IV: Continuous Functions, Uniform Continuity, Week 2 Compactness for Metric Spaces, Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered	Week	Topic Covered	
Week 2 Open and Closed Sets, Closure and Interior, Boundary Points, Subspace of a Metric Space, Week 3 Equivalent Metrics, Cauchy Sequences, Completeness, Week 4 Cantor's Intersection Theorem, Baire's Category Theorem, Contraction Principle Month: OCTOBER Week Topic Covered Week 1 Unit IV: Continuous Functions, Uniform Continuity, Week 2 Compactness for Metric Spaces, Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered	Week 1		
Week 4 Cantor's Intersection Theorem, Baire's Category Theorem, Contraction Principle Month: OCTOBER Week Topic Covered Week 1 Unit IV: Continuous Functions, Uniform Continuity, Week 2 Compactness for Metric Spaces, Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered	Week 2	Open and Closed Sets, Closure and Interior, Boundary Points, Subspace of a	
Month : OCTOBER Week Topic Covered Week 1 Unit IV: Continuous Functions, Uniform Continuity, Week 2 Compactness for Metric Spaces, Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered	Week 3	Equivalent Metrics, Cauchy Sequences, Completeness,	
Week 1 Unit IV: Continuous Functions, Uniform Continuity, Week 2 Compactness for Metric Spaces, Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered	Week 4		
Week 1 Unit IV: Continuous Functions, Uniform Continuity, Week 2 Compactness for Metric Spaces, Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered		Month: OCTOBER	
Week 2 Compactness for Metric Spaces, Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered	Week	Topic Covered	
Week 3 Deepawali Break, Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered	Week 1	Unit IV: Continuous Functions, Uniform Continuity,	
Week 4 Sequential Compactness, Bolzano-Weierstrass Property Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered	Week 2	Compactness for Metric Spaces,	
Week 5 Total Boundedness, Finite Intersection Property, Month: NOVEMBER Week Topic Covered	Week 3	Deepawali Break,	
Month: NOVEMBER Week Topic Covered	Week 4	Sequential Compactness, Bolzano-Weierstrass Property	
Week Topic Covered	Week 5	Total Boundedness, Finite Intersection Property,	
	Month: NOVEMBER		
Week 1 Continuity in Deletion with Comparts	Week Topic Covered		
week 1 Continuity in Relation with Compactness	Week 1	Continuity in Relation with Compactness	
Week 2 Connectedness, Components, Continuity in Relation with Connectedness	Week 2	Connectedness, Components, Continuity in Relation with Connectedness	
Week 3 *Revision, Test and Assignments	Week 3	*Revision, Test and Assignments	

Class:- BA/B.Sc/BSc (Hons)-III (5th Semester)
Subject:- BM352/12BSM352:: Groups and Rings

Month: JULY						
Week Topic Covered						
Week 3	Unit I: Definition of a Group with Example and Simple Properties of Groups					
Week 4	Subgroups and Subgroup Criteria,					
Week 5 (3 Days)	Generation of Groups,					
	Month: AUGUST					
Week	Topic Covered					
Week 1	Cyclic Groups, Cosets, Left and Right Cosets					
Week 2	Index of a Sub-Group Coset Decomposition, Largrage's Theorem and its Consequences, Normal Subgroups, Quotient Groups,					
Week 3	Unit II: Homoomorphisms, Isomophisms, Automorphisms and Inne Automorphisms of a Group, Automorphisms of Cyclic Groups,					
Week 4	Permutations Groups. Even and Odd Permutations, Alternating Groups, Cayley's Theorem, Center of a Group and Derived Group of a Group.					
	Month: SEPTEMBER					
Week	Topic Covered					
Week 1	Unit III: Introduction to Rings, Subrings, Integral Domains and Fields,					
Week 2	Characteristics of a Ring. Ring Homomorphisms,					
Week 3	Ideals (Principle, Prime and Maximal) and Quotient Rings					
Week 4	Field of Quotients of an Integral Domain					
	$\mathbf{Month}: \mathbf{OCTOBER}$					
Week	Topic Covered					
Week 1	Unit IV: Euclidean Rings, Polynomial Rings, Polynomials Over the Rational Field,					
Week 2	The Eisenstein's Criterion,					
Week 3	Deepawali Break					
Week 4	Polynomial Rings Over Commutative Rings,					
Week 5	Unique Factorization Domain					
	Month: NOVEMBER					
Week	Topic Covered					
Week 1	R Unique Factorization Domain Implies so is R[X1 , X2Xn]					
Week 2	R Unique Factorization Domain Implies so is R[X1, X2Xn] with Examples					
Week 3	*Revision, Test and Assignments					

Name of Assistant Professor:-

Dr Shilpi BA/B.Sc/BSc (Hons)-III (5th Semester) Class:-Subject: BM353/12BSM353:: Numerical Analysis

	Month: JULY					
Week	Topic Covered					
Week 3	Unit I: Finite Differences Operators and their Relations.					
Week 4	Finding the Missing Terms and Effect of Error in a Difference Tabular Values					
Week 5 (4 Days)	Finding the Missing Terms and Effect of Error in a Difference Tabular Values					
(1 D aj s)	Month: AUGUST					
Week	Topic Covered					
Week 1	Interpolation with Equal Intervals: Newton's Forward Interpolation Formulae and Newton's Backward Interpolation Formulae with Examples					
Week 2	Interpolation with Unequal Intervals: Newton's Divided Difference, Lagrange's Interpolation Formulae, Hermite Formula					
Week 3	Unit II: Central Differences: Gauss Forward and Gauss's Backward Interpolation Formulae,					
Week 4	Sterling, Bessel Formula. Probability Distribution of Random Variables,					
	Month: SEPTEMBER					
Week	Topic Covered					
Week 1	Binomial Distribution, Poisson's Distribution, Normal Distribution: Mean, Variance and Fitting.					
Week 2	Unit III Numerical Differentiation: Derivative of a Function using Interpolation Formulae as Studied in Sections –I & II.					
Week 3	Eigen Value Problems: Power Method, Jacobi's Method, Given's Method					
Week 4	House-Holder's Method, QR Method, Lanczos Method.					
	Month: OCTOBER					
Week	Topic Covered					
Week 1	Unit IV: Numerical Integration: Newton-Cote's Quadrature Formula, Trapezoidal Rule, Simpson's One Third and Three-Eighth Rule					
Week 2	Chebychev Formula, Gauss Quadrature Formula					
Week 3	Deepawali Break					
Week 4	Numerical Solution of Ordinary Differential Equations: Single Step Methods- Picard's Method. Taylor's Series Method					
Week 5	Euler's Method, Runge-Kutta Methods					
	Month: NOVEMBER					
Week	Topic Covered					
Week 1	Multiple Step Methods; Predictor-Corrector Method					
Week 2	Modified Euler's Method, Milne-Simpson's Method					
Week 3	*Revision, Test and Assignments					

Class:
Subject:
B.Sc (Honours) Mathematics (5th Semester)

BHM354:: Integral Equations(Paper-IV)

	Month: JULY					
Week	Topic Covered					
Week 3	Unit I: Linear Integral Equations, Some Basic Identities, Initial-Value Problems Reduced to Volterra Integral Equations					
Week 4	Method of Successive Approximation to Solve Volterra Integral Equations of Secon Kind,					
Week 5 (4 Days)	Iterated Kernels and Neumann Series for Volterra Equation					
	Month: AUGUST					
Week	Topic Covered					
Week 1	Resolvent Kernel as a Series in λ, Laplace Transform Method for a Difference Kernel, Solution of a Volterra Integral Equation of the First Kind					
Week 2	Unit II: Boundary Value Problems Reduced to Fredholm Integral Equations, Method of Successive Approximations to Solve Fredholm Equation of Second Kind					
Week 3	Iterated Kernels and Neumann Series for Fredholm Equations,					
Week 4	Resolvent Kernel as a Sum of Series, Fredholm Resolvent Kernel as a Ratio of Two Series					
	$\mathbf{Month}: \mathbf{SEPTEMBER}$					
Week	Topic Covered					
Week 1	Fredholm Equations with Degenerate Kernel, Approximation of a Kernel by a Degenerate Kernel, Fredholm Alternative					
Week 2	Unit III: Green's Function. Use of Method of Variation of Parameters to Construction the Green's Function for a Non-Homogeneous Linear Second Degree BVP					
Week 3	Basic Four Properties of the Green's Function,					
Week 4	Alternate Procedure for Construction of the Green's Function by Using its Basic Four Properties.					
	Month: OCTOBER					
Week	Topic Covered					
Week 1	Method of Series Representation of the Green's Function in Terms of the Solutions of the Associated Homogeneous BVP.					
Week 2	Reduction of a BVP to a Fredholm Integral Equation with Kernel as Green's Function					
Week 3	Deepawali Break					
Week 4	Unit IV: Homogeneous Fredholm Equations with Symmetric Kernels					
Week 5	Solution of Fredholm Equations of the Second Kind with Symmetric Kernel					
	Month: NOVEMBER					
Week	Topic Covered					
Week 1	Method of Fredholm Resolvent Kernel, Method of Iterated Kernels,					
Week 2	Fredholm Equations of the First Kind with Symmetric Kernels					
Week 3	*Revision, Test and Assignments					

Name of Assistant Professor:- Dr Shilpi

Class:- B.Sc (Honours) Mathematics (5th Semester)
Subject:- BHM355:: Methods of Applied Mathematics

Month: JULY						
Week	Topic Covered					
Week 3	Unit I: Solution of 3D Laplace, Wave and Heat Equations in Spherical Polar Co-Ordinates by the Method of Separation of Variables.					
Week 4	Solution of 3D Laplace Equation in Cylindrical Polar Co-Ordinates by the Method of Separation of Variables.					
Week 5 (4 Days)	Solution of 3D Wave and Heat Equations in Cylindrical Polar Co-Ordinates by the Method of Separation of Variables.					
	Month: AUGUST					
Week	Topic Covered					
Week 1	Fourier Series Solution of the Wave Equation, Transformation of Boundary Value Problems.					
Week 2	Unit II: Fourier Series Solution of the Heat Equation, Steady-State Temperature in Plates					
Week 3	The Heat and Wave Equations in Unbounded Domains, Fourier Transform Solution of Boundary Value Problems.					
Week 4	The Heat Equation in an Infinite Cylinder and in a Solid Sphere.					
	Month: SEPTEMBER					
Week	Topic Covered					
Week 1	Unit III: Hankel Transform of Elementary Functions. Operational Properties of the Hankel Transform.					
Week 2	Applications of Hankel Transforms to PDE.					
Week 3	Definition and Basic Properties of Finite Fourier Sine and Cosine Transforms, its Applications to the Solutions of BVP's and IVP's					
Week 4	Applications of Finite Fourier Sine and Cosine Transforms to the Solutions of BVP's and IVP's					
	Month: OCTOBER					
Week	Topic Covered					
Week 1	Unit IV: Moments and Products of Inertia, Angular Momentum of a Rigid Body,					
Week 2	Principal Axes and Principal Moment of Inertia of a Rigid Body,					
Week 3	Deepawali Break					
Week 4	Kinetic Energy of a Rigid Body Rotating about a Fixed Point,					
Week 5	Momental Ellipsoid and Equimomental Systems, Coplanar Mass Distributions, General Motion of a Rigid Body.					
	Month: NOVEMBER					
Week	Topic Covered					
Week 1	Momental Ellipsoid and Equimomental Systems, Coplanar Mass Distributions, General Motion of a Rigid Body.					
Week 2	Momental Ellipsoid and Equimomental Systems, Coplanar Mass Distributions, General Motion of a Rigid Body.					
Week 3	*Revision, Test and Assignments					

Name of Assistant Professor:-

Dr SUDESH KUMARI

Class:-Subject:- B.Sc (Honours) Mathematics (5th Semester) BHM356:: Operations Research-I(Paper-VI)

Month: JULY						
Week	Topic Covered					
Week 3	Unit I: Definition, Scope, Methodology and Applications of OR.					
Week 4	Types of OR Models. Concept of Optimization,					
Week 5 (3 Days)	Linear Programming: Introduction, Formulation of a Linear Programming Problem (LPP)					
(0 2 4) 5/	Month: AUGUST					
Week	Topic Covered					
Week 1	Requirements for an LPP, Advantages and Limitations of LP. Graphical Solution: Multiple, Unbounded and Infeasible Solutions.					
Week 2	Unit II: Principle of Simplex Method: Standard Form, Basic Solution, Basic Feasible Solution.					
Week 3	Computational Aspect of Simplex Method: Cases of Unique Feasible Solution, No Feasible Solution,					
Week 4	Multiple Solution and Unbounded Solution and Degeneracy and Test					
	Month: SEPTEMBER					
Week	Topic Covered					
Week 1	Two Phase and Big- M Methods.					
Week 2	Unit III: Duality in LPP, Primal-Dual Relationship with Examples					
Week 3	Transportation Problem: Methods for Finding Basic Feasible Solution of a Transportation Problem, Modified Distribution Method for Finding the Optimum Solution,					
Week 4	Unbalanced and Degenerate Transportation Problems, Transshipment Problem, Maximization in a Transportation Problem and Test					
	Month: OCTOBER					
Week	Topic Covered					
Week 1	Unit IV: Assignment Problem: Solution by Hungarian Method,					
Week 2	Unbalanced Assignment Problem,					
Week 3	Deepawali Break					
Week 4	Maximization in an Assignment Problem,					
Week 5	Crew Assignment and Travelling Salesman Problem.					
	Month: NOVEMBER					
Week	Topic Covered					
Week 1	Game Theory: Two Person Zero Sum Game, Game with Saddle Points, The Rule of Dominance					
Week 2	Algebraic, Graphical and Linear Programming Methods for Solving Mixed Strategy Games.					
Week 3	*Revision, Test and Assignments					